Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yi-Hang Wen, Jian Zhang, Zhao-Ji Li, Ye-Yan Qin, Yao Kang, Rui-Feng Hu, Jian-Kai Cheng and Yuan-Gen Yao*

The State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: yyg@ms.fjirsm.ac.cn

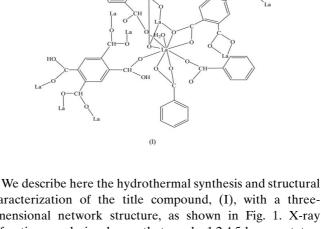
Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.008 Å R factor = 0.029 wR factor = 0.078 Data-to-parameter ratio = 9.9

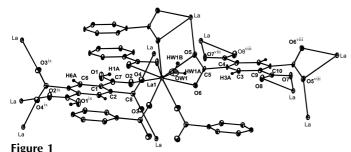
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved


Poly[diaqua(μ_6 -benzene-1,2,4,5-tetracarboxylato)(μ_6 -2,5-dicarboxybenzene-

The title compound, $[La_2(betc)(H_2betc)(H_2O)_2]_n$ (betc = benzene-1,2,4,5-tetracarboxylate, $C_{10}H_2O_4$, and H_2betc is 2,5-dicarboxybenzene-1,4-dicarboxylate, $C_{10}H_4O_4$) was obtained by hydrothermal reaction. The compound possesses an infinite three-dimensional network structure. The central La^{III} atom is nine-coordinate by eight carboxylate O atoms from six different organic ligands derived from H_4 betc (1,2,4,5-benzenetetracarboxylic acid), with La–O distances ranging from 2.439 (4) to 2.658 (4) Å, and one water molecule, with La–OW1 = 2.503 (5) Å.


1,4-dicarboxylato)dilanthanum(III)]

Comment

Chemists have devoted great effort to the research of novel coordination materials by using multidentate organic ligands to coordinate to transition metal centers (Fujita *et al.*, 1994; Desiraju, 1995). In particular, benzenepolycarboxylate ligands have been shown to be good building blocks in the design of metal–organic materials having the desired topologies owing to their rich variety of coordination modes. 1,2,4,5-Benzene-tetracarboxylic acid (H₄btec) may be a good choice for the construction of coordination polymers through full or partial deprotonation of its carboxylic groups and a considerable number of complexes of metal ions with H₄btec have been determined in recent years (Sun *et al.*, 2002; Wu *et al.*, 2001).

characterization of the title compound, (I), with a threedimensional network structure, as shown in Fig. 1. X-ray diffraction analysis shows that each 1,2,4,5-benzenetetracarboxylate ligand (betc⁴⁻ and H₂betc²⁻) adopts a μ_6 -bridging mode, linking six La^{III} atoms through its carboxylic acid O atoms, and each lanthanum(III) center links six 1,2,4,5benzenetetracarboxylate ligands, giving rise to a threedimensional network structure. Furthermore, there are O– H···O hydrogen-bonding interactions between ligated water Received 12 March 2004 Accepted 31 March 2004 Online 9 April 2004

The structure of (I). Displacement ellipsoids are plotted at the 30% probability level [symmetry codes: (viii) -x, 3 - y, 1 - z; (ix) 2 - x, 1 - y, 2 - z].

molecules and carboxylic acid O atoms or between noncoordinated carboxylate and adjacent carboxylic acid O atoms. It is noteworthy that the benzenecarboxylate ligands have two different coordination modes. The first has all eight carboxylic O atoms of betc⁴⁻ ligands coordinated to La^{III} atoms with two O atoms bonded to one La^{III} atom [O5 and O6, O7 and O8, O5^{viii} and O6^{viii}, O7^{viii} and O8^{viii}; symmetry code: (viii) -x, 3 - y, 1 - z] or one O atom linking two La^{III} atoms (O5 and O5^{viii}). The second has only six carboxylic acid O atoms of H₂betc²⁻ ligands coordinated to La^{III} atoms with each O atom bonding to one La^{III} atom.

Experimental

A mixture of $La(NO_3)_3 \cdot 3H_2O$ (0.22 g, 0.5 mmol), H_4 betc (0.127 g, 0.5 mmol), 1,3-bis(4-pyridyl)propane (0.05 g, 0.025 mmol) and H_2O (18 ml) was sealed in a 25 ml stainless-steel reactor with a Telflon liner and was heated at 433 K for 3 d. On completion of the reaction, the reactor was cooled slowly to room temperature and the mixture was filtered, giving colorless single crystals suitable for X-ray analysis.

Crystal data

193 parameters

refinement

H atoms treated by a mixture of

independent and constrained

$\begin{bmatrix} La_{2}(C_{10}H_{2}O_{4})(C_{10}H_{4}O_{4})(H_{2}O)_{2} \end{bmatrix}$ $M_{r} = 816.10$ Triclinic, $P\overline{1}$ a = 6.441 (1) Å b = 9.4467 (3) Å c = 9.6323 (1) Å $\alpha = 88.518$ (2)° $\beta = 74.744$ (2)° $\gamma = 76.660$ (2)° V = 549.80 (3) Å ³ Data collection	Z = 1 $D_x = 2.465 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 2449 reflections $\theta = 2.2-25.0^{\circ}$ $\mu = 3.93 \text{ mm}^{-1}$ T = 293 (2) K Prism, colorless $0.30 \times 0.20 \times 0.16 \text{ mm}$
Dulu collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.348, T_{\max} = 0.533$ 2896 measured reflections	1917 independent reflections 1793 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 25.0^{\circ}$ $h = -7 \rightarrow 7$ $k = -11 \rightarrow 11$ $l = -11 \rightarrow 7$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.078$ S = 1.00 1917 reflections	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0509P)^{2} + 2.7076P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 (\Delta/\sigma)_{\text{max}} < 0.001 \Delta\rho_{\text{max}} = 0.91 \text{ e } \text{\AA}_{\circ}^{-3}$

Table 1

Selected geometric parameters (Å, °).

La1-O4 ⁱ	2.439 (4)	La1-O2	2.579 (4)
La1-O3 ⁱⁱ	2.478 (4)	La1-O8 ^{iv}	2.598 (4)
La1-OW1	2.503 (5)	La1-O7 ^{iv}	2.609 (4)
La1-O5 ⁱⁱⁱ	2.563 (4)	La1-O5	2.658 (4)
La1-O6	2.564 (4)		
O4 ⁱ -La1-O3 ⁱⁱ	77.72 (14)	O5 ⁱⁱⁱ -La1-O7 ^{iv}	80.26 (12)
O4 ⁱ -La1-OW1	140.14 (18)	O6-La1-O7 ^{iv}	73.82 (12)
O3 ⁱⁱ -La1-OW1	66.59 (18)	O2-La1-O7 ^{iv}	119.80 (12)
O4i-La1-O5iii	144.77 (13)	$O8^{iv}$ -La1- $O7^{iv}$	50.01 (11)
O3 ⁱⁱ -La1-O5 ⁱⁱⁱ	136.51 (13)	O4 ⁱ -La1-O5	127.32 (13)
OW1-La1-O5 ⁱⁱⁱ	70.31 (17)	O3 ⁱⁱ -La1-O5	101.14 (13)
O4 ⁱ -La1-O6	81.64 (13)	OW1-La1-O5	78.40 (18)
O3 ⁱⁱ -La1-O6	72.51 (13)	O5 ⁱⁱⁱ -La1-O5	63.99 (13)
OW1-La1-O6	103.0 (2)	O6-La1-O5	49.70 (12)
O5 ⁱⁱⁱ -La1-O6	112.76 (11)	O2-La1-O5	143.38 (13)
O4 ⁱ -La1-O2	89.14 (15)	O8 ^{iv} -La1-O5	114.33 (12)
O3 ⁱⁱ -La1-O2	88.89 (13)	O7 ^{iv} -La1-O5	74.67 (12)
OW1-La1-O2	73.5 (2)	La1-OW1-HW1B	138 (5)
O5 ⁱⁱⁱ -La1-O2	84.46 (13)	La1-OW1-HW1A	99 (6)
O6-La1-O2	160.58 (13)	C7-O2-La1	142.3 (4)
O4 ⁱ -La1-O8 ^{iv}	71.89 (14)	C8–O3–La1 ⁱⁱ	139.0 (3)
O3 ⁱⁱ -La1-O8 ^{iv}	142.69 (13)	C8-O4-La1 ^v	169.9 (4)
OW1-La1-O8 ^{iv}	130.00 (19)	C5–O5–La1 ⁱⁱⁱ	151.3 (3)
O5 ⁱⁱⁱ -La1-O8 ^{iv}	73.38 (13)	C5-O5-La1	91.6 (3)
O6-La1-O8 ^{iv}	122.39 (12)	La1 ⁱⁱⁱ -O5-La1	116.01 (13)
O2-La1-O8 ^{iv}	69.81 (12)	C5-O6-La1	96.6 (3)
O4 ⁱ -La1-O7 ^{iv}	73.08 (14)	C10-O7-La1vi	93.9 (3)
$O3^{ii}$ -La1- $O7^{iv}$	137.92 (13)	C10-O8-La1vi	94.0 (3)
OW1-La1-O7 ^{iv}	146.62 (17)		
	1 (") 1	2 2 (1 ()

Symmetry codes: (i) x - 1, y, z; (ii) 1 - x, 2 - y, 2 - z; (iii) 1 - x, 2 - y, 1 - z; (iv) x, y - 1, z; (v) 1 + x, y, z; (vi) x, 1 + y, z.

Table 2	
Hydrogen-bonding geometry (Å, $^{\circ}$).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O1 - H1A \cdots O8^{iv} \\ OW1 - HW1B \cdots O6^{v} \\ OW1 - HW1B \cdots O7^{vii} \end{array}$	0.78 (7) 0.79 (8) 0.79 (8)	1.82 (7) 2.22 (8) 2.32 (8)	2.592 (5) 2.824 (6) 2.975 (7)	170 (7) 134 (7) 141 (7)

Symmetry codes: (iv) x, y - 1, z; (v) 1 + x, y, z; (vii) 1 - x, 3 - y, 1 - z.

H atoms bonded to C atoms were placed at calculated positions (C-H = 0.93 Å) and refined with isotropic displacement parameters $[U_{iso} = 1.2U_{eq}(C)]$, using a riding model. H atoms associated with the water molecules and O atoms were located in difference maps and refined freely. The deepest hole is located 0.98 Å from atom La1.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART* and *SAINT* (Siemens, 1994); data reduction: *SAINT* and *XPREP* in *SHELXTL* (Siemens, 1994); program(s) used to solve structure: *SHELXTL*; program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was financially supported by the State Key Basic Research and Development Plan of China (001CB108906), the NNSF of China (No. 20173063), Key Project in KIP of CAS (KJCX2-H3) and the NSF of Fujian Province (E0020001).

References

Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.

 $\Delta \rho_{\rm min} = -1.36 \text{ e} \text{ Å}^{-3}$

- Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Siemens (1994). SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sun, D., Cao, R., Liang, Y., Shi, Q. & Hong, M. (2002). J. Chem. Soc. Dalton Trans. pp. 1847–1851.
- Wu, C.-D., Lu, C.-Z., Lu, S.-F., Zhuang, H.-H. & Huang, J.-S. (2001). Inorg. Chem. Commun. 5, 171–174.